Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra

نویسندگان

  • Roberto Bagnara
  • Enric Rodríguez-Carbonell
  • Enea Zaffanella
چکیده

A technique for generating invariant polynomial inequalities of bounded degree is presented using the abstract interpretation framework. It is based on overapproximating basic semi-algebraic sets, i.e., sets defined by conjunctions of polynomial inequalities, by means of convex polyhedra. While improving on the existing methods for generating invariant polynomial equalities, since polynomial inequalities are allowed in the guards of the transition system, the approach does not suffer from the prohibitive complexity of the methods based on quantifier-elimination. The application of our implementation to benchmark programs shows that the method produces non-trivial invariants in reasonable time. In some cases the generated invariants are essential to verify safety properties that cannot be proved with classical linear invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interprocedurally Analyzing Linear Inequalities

We present an abstraction of the effect of procedures through convex sets of transition matrices. Conditional branching is handled by postponing the conditional evaluation after the procedure call. In order to obtain an effective analysis convex sets are approximated by polyhedra. For an efficient implementation we approximate polyhedra by means of simplices. In [CH78], Cousot and Halbwachs pre...

متن کامل

Lower Bound on Testing

We introduce a new method of proving lower bounds on the depth of algebraic d-degree decision (resp. computation) trees and apply it to prove a lower bound (log N) (resp. (log N= log log N)) for testing membership to an n-dimensional convex polyhedron having N faces of all dimensions, provided that N > (nd) (n) (resp. N > n (n)). This bound apparently does not follow from the methods developed ...

متن کامل

Lower Bound on Testing Membership to a Polyhedron by Algebraic Decision and Computation Trees

We introduce a new method of proving lower bounds on the depth of algebraic d-degree decision (resp. computation) trees and apply it to prove a lower bound ~2 (log N) (resp. f2 (log N/log log N)) for testing membership to an n-dimensional convex polyhedron having N faces of all dimensions, provided that N > ( n d ) ~( ' ) (resp. N > nU<n)). This bound apparently does not follow from the methods...

متن کامل

Polynomial inequalities representing polyhedra

Our main result is that every ro-dimensional polytope can be described by at most (2n — 1) polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n — 2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities. 1. I N T R O D U C T I O N By a striking result of...

متن کامل

Interprocedurally Analyzing Linear Inequality Relations

We present an abstraction of the effect of procedures through convex sets of transition matrices. Conditional branching is handled by postponing the conditional evaluation after the procedure call. In order to obtain an effective analysis convex sets are represented by polyhedra. For an efficient implementation we approximate polyhedra by means of simplices. In [CH78], Cousot and Halbwachs pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005